Statistical methods for tissue array images—algorithmic scoring and co-training
نویسندگان
چکیده
منابع مشابه
Statistical Methods for Tissue Array Images - Algorithmic Scoring and Co-training.
Recent advances in tissue microarray technology have allowed immunohistochemistry to become a powerful medium-to-high throughput analysis tool, particularly for the validation of diagnostic and prognostic biomarkers. However, as study size grows, the manual evaluation of these assays becomes a prohibitive limitation; it vastly reduces throughput and greatly increases variability and expense. We...
متن کاملStatistical Methods for Analyzing Tissue Microarray Images - Algorithmic Scoring and Co-training
Recent advances in tissue microarray technology have allowed immunohistochemistry to become a powerful medium-to-high throughput analysis tool, particularly for the validation of diagnostic and prognostic biomarkers. However, as study size grows, the manual evaluation of these assays becomes a prohibitive limitation; it vastly reduces throughput and greatly increases variability and expense. We...
متن کاملApplying Co-Training Methods to Statistical Parsing
We propose a novel Co-Training method for statistical parsing. The algorithm takes as input a small corpus (9695 sentences) annotated with parse trees, a dictionary of possible lexicalized structures for each word in the training set and a large pool of unlabeled text. The algorithm iteratively labels the entire data set with parse trees. Using empirical results based on parsing the Wall Street...
متن کاملCorrected Co-training for Statistical Parsers
Corrected co-training (Pierce & Cardie, 2001) and the closely related co-testing (Muslea et al., 2000) are active learning methods which exploit redundant views to reduce the cost of manually creating labeled training data. We extend these methods to statistical parsing algorithms for natural language. Because creating complex parse structures by hand is significantly more timeconsuming than se...
متن کاملCo-training for Statistical Machine Translation
I propose a novel co-training method for statistical machine translation. As co-training requires multiple learners trained on views of the data which are disjoint and sufficient for the labeling task, I use multiple source documents as views on translation. Co-training for statistical machine translation is therefore a type of multi-source translation. Unlike previous mutli-source methods, it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2012
ISSN: 1932-6157
DOI: 10.1214/12-aoas543